Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hybrid molecular beam epitaxy (MBE) growth of Sn-modified BaTiO3 films was realized with varying domain structures and crystal symmetries across the entire composition space. Macroscopic and microscopic structures and the crystal symmetry of these thin films were determined using a combination of optical second harmonic generation (SHG) polarimetry and scanning transmission electron microscopy (STEM). SHG polarimetry revealed a variation in the global crystal symmetry of the films from tetragonal (P4mm) to cubic (Pm3¯m) across the composition range, x = 0 to 1 in BaTi1−xSnxO3 (BTSO). STEM imaging shows that the long-range polar order observed when the Sn content is low (x = 0.09) transformed to a short-range polar order as the Sn content increased (x = 0.48). Consistent with atomic displacement measurements from STEM, the largest polarization was obtained at the lowest Sn content of x = 0.09 in Sn-modified BaTiO3 as determined by SHG. These results agree with recent bulk ceramic reports and further identify this material system as a potential replacement for Pb-containing relaxor-based thin film devices.more » « less
-
null (Ed.)Advances in physical vapor deposition techniques have led to a myriad of quantum materials and technological breakthroughs, affecting all areas of nanoscience and nanotechnology which rely on the innovation in synthesis. Despite this, one area that remains challenging is the synthesis of atomically precise complex metal oxide thin films and heterostructures containing “stubborn” elements that are not only nontrivial to evaporate/sublimate but also hard to oxidize. Here, we report a simple yet atomically controlled synthesis approach that bridges this gap. Using platinum and ruthenium as examples, we show that both the low vapor pressure and the difficulty in oxidizing a “stubborn” element can be addressed by using a solid metal-organic compound with significantly higher vapor pressure and with the added benefits of being in a preoxidized state along with excellent thermal and air stability. We demonstrate the synthesis of high-quality single crystalline, epitaxial Pt, and RuO 2 films, resulting in a record high residual resistivity ratio (=27) in Pt films and low residual resistivity, ∼6 μΩ·cm, in RuO 2 films. We further demonstrate, using SrRuO 3 as an example, the viability of this approach for more complex materials with the same ease and control that has been largely responsible for the success of the molecular beam epitaxy of III-V semiconductors. Our approach is a major step forward in the synthesis science of “stubborn” materials, which have been of significant interest to the materials science and the condensed matter physics community.more » « less
-
A seemingly simple oxide with a rutile structure, RuO2, has been shown to possess several intriguing properties ranging from strain-stabilized superconductivity to a strong catalytic activity. Much interest has arisen surrounding the controlled synthesis of RuO2 films, but unfortunately, utilizing atomically controlled deposition techniques, such as molecular beam epitaxy (MBE), has been difficult due to the ultra-low vapor pressure and low oxidation potential of Ru. Here, we demonstrate the growth of epitaxial, single crystalline RuO2 films on different substrate orientations using the novel solid-source metal–organic (MO) MBE. This approach circumvents these issues by supplying Ru using a “pre-oxidized” solid MO precursor containing Ru. High-quality epitaxial RuO2 films with a bulk-like room-temperature resistivity of 55 μΩ cm were obtained at a substrate temperature as low as 300 °C. By combining x-ray diffraction, transmission electron microscopy, and electrical measurements, we discuss the effect of substrate temperature, orientation, film thickness, and strain on the structure and electrical properties of these films. Our results illustrating the use of a novel solid-source metal–organic MBE approach pave the way to the atomic-layer controlled synthesis of complex oxides of “stubborn” metals, which are not only difficult to evaporate but also hard to oxidize.more » « less
-
We report on the dielectric response of epitaxial BaSnO3 films grown on Nb-doped SrTiO3 (001) substrates using a hybrid molecular beam epitaxy approach. Metal-insulator-metal capacitors were fabricated to obtain frequency- and temperature-dependent dielectric constant and loss. Irrespective of film thickness and cation stoichiometry, the dielectric constant obtained from Ba1−xSn1−yO3 films remained largely unchanged at 15-17 and was independent of frequency and temperature. A loss tangent of ∼1 × 10−3 at 1 kHz < f < 100 kHz was obtained for stoichiometric films, which increased significantly with non-stoichiometry. Using density functional theory calculations, these results are discussed in the context of point defect complexes that can form during film synthesis.more » « less
An official website of the United States government
